Gate Oxide Breakdown

Navid Azizi and Peter Yiannacouras
Outline

- Motivation
- Background
- Root Causes for Gate Oxide Breakdown
- Symptoms of Gate Oxide Breakdown
- Failure Models
- Prediction of Gate Oxide Breakdown
- Protection Against Gate Oxide Breakdown
- Conclusion
Motivation

- As technology is scaling, t_{ox} is getting thinner

Why?

- To reduce power, V_{DD} is lowered
 - To maintain performance
 - To control short channel effects
 - Gate Oxide must be made thinner

- With scaling, Gate Oxide Reliability becomes an issue
 - Electric Fields within the Gate Oxide grow larger with scaling
 - More and more transistors on chip
Background
Transistor Structure

Gate Oxide Breakdown
Gate Oxide Traps

- Defects in the Gate Oxide are called Traps
 - They can trap charges

- Traps are usually neutral except for
 - Near the anode they quickly become negatively charged
 - Near the cathode they quickly become positively charged
Root Causes
What is Gate Oxide Breakdown?

- Breakdown is defined as the time when there is a conduction path from the anode to the cathode through the gate oxide

- Traps allow for creation of conduction path

Outline of this section
- First we will see how traps lead to conduction paths
- Then we will investigate different physical methods for the creation of traps
 - The mathematics for these different physical models will be dealt later
Traps within Gate Oxide

- Traps start to form in the Gate Oxide
 - originally
 - Non-overlapping
 - Do not conduct
Soft Breakdown

- As more and more traps are created
 - Traps start to overlap
 - Conduction Path is created

- Once this conduction path is created we have **Soft Breakdown (SBD)**
Thermal Damage

- Conduction leads to heat
- Heat leads to thermal damage
- Thermal Damage leads to Traps
- More Traps leads to more conduction

Gate: PolySilicon

SiO$_2$

Substrate
Hard Breakdown

- Silicon in the breakdown spots melts
- Oxygen is released
- Silicon Filament is formed from Gate to Substrate (Hard Breakdown)
Photographs of Gate Oxide Breakdown

- Breakdown region pictured through emission microscopy
 - Photon emission at breakdown regions

- Dark region indicates area where Silicon has melted

Photographs of Gate Oxide Breakdown

- TEM Image of Breakdown Spot
- Substrate below Gate Oxide Breakdown

Trap Generation

- Know how traps can cause Gate Oxide Breakdown
- How are traps created?
- Different Models (i.e. we’re not exactly sure how)
 - Thermochemical Model
 - Anode Hole Injection
 - Hydrogen Release
 - Channel Hot Carriers
 - Irradiation

- Discuss the Physical Reasons
 - Math that leads to reliability projections for above models will be presented later
Thermochemical

- Model shows good agreement with data at low Electric Fields

- Structure of SiO$_2$

- Bond Angle between O-Si-O is always 109°

- Bond angle between Si-O-Si ranges from 120° to 180°
 - Bond is severely weakened above 150°
 - Can lead to bond breakage
Thermochemical - cont

- After bond breakage
 - Oxygen Vacancy

- Important Facts about this new structure
 - Si-Si is a very weak bond
 - Si-O bond is highly polar
Thermochemical - cont

- Go over polarization of polar molecules within an electric field
 - Polar molecules have a default polarization
 - In the presence of an electric field polarization can change
Thermochemical - cont

- When the Electric Field is applied to the oxide
 - The highly polar Si-O bonds within the oxide become polarized
 - The lattice becomes distorted
 - Each molecule of SiO₂ not only feels E_{ox} but E_{loc}
 - Si-Si bonds become strained and break
Thermochemical – cont

- After the Si-Si bond breaks
 - The remaining electrons cause a hole trap
Anode Hole Injection

- Model shows good agreement with data at high Electric Fields

- High Electric Fields
 - Large tunneling current (electrons) through the oxide
 - Electrons have high Kinetic Energy
 - Electron hits the Gate Anode and transfers energy to Hole
 - Hole tunnels back into the Gate Oxide
 - Hole creates trap
Anode Hole Injection

- How do holes create Traps?
 - Holes break Si-O bonds
 - Two bond breakage near a Si atom can cause a permanent trap

Hydrogen Release Model

- Very similar to Anode Hole Injection Model
 - The AHI rate is too small to produce the defects that lead to breakdown
 - Use Hydrogen instead of Holes to produce traps

- Just as in AHI high energy electrons tunnel through oxide
 - Break Si-H bond at interface of gate oxide
 - H^+ ion (proton) is released into the oxide
 - Proton reacts with oxygen vacancies to produce traps
 - $(\text{Si-Si})+H^+ \rightarrow \text{Si-H}^+ -\text{Si}$
Channel Hot Carriers

- Thermochemical, AHI and HR models can all explain gate oxide breakdown when there is no potential difference between drain and source
 - There is data, however, that shows that gate oxide breakdown is more likely when there is a potential difference between drain and source

- Hot Carriers
 - Electrons and Holes who, in the presence of high lateral fields, gain sufficient energy that they are no longer in equilibrium with the lattice

- The hot carriers create an electron-hole pair by impact ionization in the channel
 - Hole enters the substrate
 - Electron enters the gate oxide and may cause traps
Irradiation

- Irradiation with ions can lead to oxide defects
- Irradiation has no immediate impact by itself, the transistor works as it should
- But transistors that have been irradiated, and then stressed break down more quickly
- Exact nature of defects caused due to irradiation in gate oxide is unknown
Symptoms
Symptoms of Breakdown

- **Transistor Characteristics**
 - Hard Breakdown
 - Soft Breakdown

- **Circuit Characteristics**
 - Inverter
 - Digital Logic
 - SRAMs
 - RF Circuitry
Hard Breakdown

- Current path exists from the Gate to the Channel
 - Large increase in gate current
 - ~2 orders of magnitude larger than normal when the transistor is on
 - ~6 orders of magnitude larger than normal when the transistor is off

- Current path is characterized by a breakdown resistance $R_G = V_G/I_G$
 - R_G depends on breakdown locations
 - Increases linearly over drain and source regions due to the length of the drain and source extensions

Hard Breakdown Continued

- Breakdown over channel can be modeled with this circuit
 - $V_G > 0$
 - Current is injected from the gate to the channel where it goes to the drain and source
 - $V_G < 0$
 - Electrons are injected from the gate through the breakdown path
 - Diffuse through the substrate
 - Collect at source and drain

Soft Breakdown

- Not much change in transistor characteristic
 - Increased off state leakage current

- Transistor On-state
 - Increased gate leakage
 - With technologies with thin t_{ox}’s additional gate current may be large compared to intrinsic gate tunneling leakage

- Transistor Off-State
 - If breakdown occurs near drain, increase in GIDL of 5 orders of magnitude
 - Due to negative charge trappings in the oxide over the overlap region

- Transistors with low W/L
 - Breakdown region may form considerable portion of gate
 - Transconductance will drops of 50%
 - Saturation current of 30%
Inverter Characteristics

- Inverter stressed with positive voltages
 - NMOS is damaged
 - Ground current is increased
- Inverter stressed with negative voltages
 - PMOS is damaged
 - VDD current is increased
- Positive or Negative Stresses
 - Input current follows output current

Inverter Characteristics - cont

- DC Transfer Characteristic
 - Positive Stress
 - Can’t produce a good ‘0’
 - Negative Stress
 - Can’t produce a good ‘1’

Digital Logic

- Breakdown doesn’t cause that large a problem
 - Node B has extra loading and can’t be pulled completely high
 - Node C can’t be pulled completely low
 - But, next logic stages will clean the signal up
Digital Logic - cont

- Ring Oscillator Example
 - Functions, albeit at lower frequency, after many breakdowns
 - Increase in leakage current

SRAM

- Breakdown can occur in 3 different places
 - Drain
 - P-source
 - N-source
SRAM - cont

- Static Noise Margin (stability) of SRAMs decreases with breakdown
 - N-source and p-source breakdowns induce an asymmetry in the butterfly curve reducing the SNM
 - P-source breakdown is not so bad, because the NMOS is strong enough to combat the effects
 - N-source breakdown results in decreased SNM because the PMOS is weak and cannot deliver enough current to combat the extra leakage source
 - Drain breakdowns reduce the output swing of the SRAM, reducing it’s SNM

RF Circuitry

- Analog circuit designed with many specifications
 - A single breakdown can cause the circuit to stop functioning at its operating point

- Transistors are usually operated in saturation
 - Increased hot-carriers

- Oxide breakdown in a LNA led to
 - 5dB (3x) decrease in gain
 - Noise Figure increased from 2dB to 3dB
 - Frequency of minimum reflection shifted by 600MHz and at operating point has changed from -27dB to -9dB (increase of 62x)

Failure Models
Goals of our Failure Model

- Mapping from device parameters
 - Area, thickness, activation energies, etc.

- and usage conditions
 - Field, current, temperature, etc.

- to breakdown occurrence
 - Time (t_{bd}) or charge (Q_{bd})
What do we know?

- Device characteristics, usage conditions
- Trap generation
- Breakdown

Breakdown Projection Models

Percolation Models
Percolation Models

- Given that trap generation occurs with some probability, what is the probability that a breakdown occurs?

Tile-based
- Developed by Sune in 1990
- Models gate oxide as a plane made up of small tiles
- Traps occur randomly in any tile
- After certain number of traps occurred in a tile, tile breaks down

\[
\ln(-\ln(1 - F)) = \ln\left(\frac{A}{a}\right) + \ln\left(ab_0p - \ln\left(\sum_{n=0}^{n_{bd}-1} \frac{(at_{ox}p)^n}{n!}\right)\right)
\]

- Is a Weibull distribution as expected
- Lacks predictive power in failing to relate \(n_{bd}\) to \(t_{ox}\)
Percolation Models

Sphere-based

- Degraeve, 1995
- Used 3-D model where traps were represented as spheres
- Only parameter is sphere radius
- Monte Carlo Simulations yielded distributions that were Weibull and similar to what was seen in practice.
- Related Weibull slope β to t_{ox}
- Accounted for non-uniform thickness

Success!

- Is the currently accepted percolation model
- Comparing to experimental data, sphere diameter $= 0.9$ nm
- Suggests that thickness less than this will die quickly (on the first trap)
Percolation Models

Cube-based
- Stathis, 1999
- Used 3-D model made up of cubes
- Only parameter is cube size
- Monte Carlo Simulations yielded distributions that were weibull and similar to what was seen in practice.
- Related Weibull slope β to t_{ox}

- Comparing to experimental data, cube size = 2.7 nm
- Size too big since oxides thinner than that were seen to be working reliably
Percolation Models

Analytical Cube-based
- Sune, 2001
- Similar as previous
- Expressed analytically as follows:

- Say λ is the probability of a cube becoming a trap
- The reliability of the gate oxide is:
 \[R_{bd} = [1-F_{col}(\lambda)]^N = [1 - \lambda^n]^N \]
 and the Weibull is
 \[W_{bd} = \ln[-\ln(1-F_{bd})] = \ln[-N\ln(1 - \lambda^n)] \]
 Or, since $\lambda << 1$,

 \[W_{bd} = \ln(N) + n\cdot\ln(\lambda) \]

- Clearly a Weibull, only parameter is cube size

But what is λ?
- This is where percolation models stop
- But for comparison:

 \[\lambda = \lambda_0 Q^\alpha \]

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>a_0</th>
<th>a_{here}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>0.56</td>
<td>0.9nm</td>
<td>1.17nm</td>
</tr>
<tr>
<td>Cube</td>
<td>1</td>
<td>2.7nm</td>
<td>2.34nm</td>
</tr>
</tbody>
</table>
Percolation Models and Soft/Hard Breakdown

- Percolation models make no distinction between hard and soft breakdown.

- This supports notion of soft and hard breakdown stemming from same cause and the only difference being after-effects (thermal runaway).

- This hypothesis was verified by Sune by showing distributions of first soft breakdown coinciding with distributions of first hard breakdown.
Breakdown Projection Models

- Breakdown projection models are closest thing we have to failure models
- Goal is to predict time to failure
- Very controversial – physicists working on percolation models criticize all research in this area.
- Often incomplete/unusable
- Two different families of breakdown projection models: E and 1/E
E and $1/E$ models

- Empirical discrepancy between breakdown at low and high fields

E Model

\[
\ln(t_{bd}) \propto \frac{\Delta H_0}{k_B T} - \gamma E_{ox}
\]

1/E Model

\[
\ln(t_{bd}) \propto \frac{\Delta H_0}{k_B T} - G(1/E_{ox})
\]
Breakdown Projection Model Candidates

- There are several models
 - Traditionally sided with either E or 1/E model, not both
 - Many not developed enough to be used yet
 - Some were absorbed by better models

- The two main candidates:
 1. AHI model (1/E model)
 2. Thermochemical model (E model)

- Both are currently attempting to unify the E and 1/E model
AHI Model

- Proclaimed cause of breakdown: Electrons
 - Tunneling electrons dissipate energy creating holes

- Model is as follows:

 \[t_{bd} = \frac{Q_{bd}}{J_n} \]

 \[Q_{bd} = \frac{Q_p}{a_p} \exp\left(\frac{B}{E} \Phi_p^{3/2}\right) \]

- Note the 1/E dependence
- Once calibrated agrees very well with data from high fields
- Can explain switch to E physics by accounting for minority ionization (very nasty equation)

- J_n – gate current density (quantum)
- Q_p – critical hole fluence at breakdown = 0.1 C/cm^2 (approx)
- B, \(\Phi_p \) are also known
- \(a_p \) – is probability a tunneling electron causes a trap. This value is unknown and cannot be calculated. Must use curve fitting to calibrate equation!!!
Thermochemical Model

- Proclaimed cause of breakdown: Electric Field
 - No place for electrons or holes

- Model is:

\[
t_{bd} = A_0 \exp \left(\frac{(\Delta H)_0 - 7.2e \cdot A \cdot E_{ox}}{k_B T} \right)
\]

- \(\Delta H_0\) – enthalpy of activation for trap generation (known)
- \(k_B\) – Boltzmann’s constant
- \(T\) – temperature
- \(A_0\) and \(A\) are known parameters

- Note the E dependence
- Purely quantitative
- Weaker agreement with data, does okay with low fields
Thermochemical Model - Enhanced

- Can account for E and 1/E effects by considering simultaneous reactions

\[k_{2a} \quad k_{2b} \text{ – reaction rate increased} \]

\[k_1 \]

\[k_{eff} = k_1 + \frac{k_{2a}k_{2b}(\exp(-k_{2a}t) - \exp(-k_{2b}t))}{k_{2b}\exp(-k_{2a}t) - k_{2a}\exp(-k_{2b}t)} \]

\[t_{bd} = \frac{\ln\left(\frac{1}{f_{crit}}\right)}{k_{eff}} \]

- \(k_{2a} \) insignificant
- \(k_{2a} \) dominates
- E dependence
- 1/E dependence
Prediction
Prediction

- Choice of model still controversial, still being researched

- Can not be done at the design phase
 - TC model can, but agreement is for small range of E and even then questionable
 - AHI model requires experiment and curve fitting

- Further complicated
 - Breakdowns may not cause failures
 - Coupling between parameters
 - Model & field
 - Physical constants & device geometry

- Prediction done through trial & error using accelerated testing
 1. Apply CVS/CCS for elevated Temperature and Voltage
 2. Extrapolate for Temperature, Voltage, and device Area
 3. Using Weibull, extrapolate for all failure rates
Prediction

- Initial steps to automating
- Plugin to BERT (Berkeley Reliability Tool)
- Simulates breakdown producing failure rates once given:
 - Usage environment (current)
 - Failure time (t_{bd})
 - An experimentally determined mapping from gate thickness to the density of defects which span the thickness
- Not applicable to design phase prediction, hope is feedback will induce “design for reliability”

Protection
Protection against Gate Oxide Breakdown

- We have seen that breakdown depends on the
 - Electric Field (Thermochemical and AHI models)
 - Hot Carriers

- What can we do to reduce the probability of Breakdown
 - Guarantee that the oxide doesn’t experience Electric Fields larger than it was designed for (Voltage across gate should not be larger than VDD)
 - Minimize the current through a transistor when it is in saturation
Bitline Reduction Scheme

- Leakage in SRAMs is becoming important for both power and performance concerns
 - Underdrive the pass-transistors by 100mV when the cell is not active to lower bitline leakage
 - But now the voltage across the gate is $V_{DD} + 100\text{mV}$
 - Reduce cell voltage to $V_{DD} - 100\text{mV}$
 - But now we lose some SRAM stability
 - Increase the cell area

- Tradeoff area for reliability

PRCH

WL

BL

100mV
RF Circuitry Protection

- We’ve seen before that RF circuitry is very sensitive to gate oxide breakdown

- \(g_m \) stage
 - Hot Carriers are exponentially related to \(V_{ds} - V_{dsat} \)
 - \(V_{ds} \) is 550mv, \(V_{dsat} \) is 200mV

- Current Switching Stage
 - In Saturation
 - Carry lots of current
RF Circuitry Protection

- g_m stage
 - Add an extra transistor to lower V_{ds} across transistors

- Current Switching Stage
 - Add extra PMOS current source to remove common-mode current from current switching transistors
Conclusion

- Gate-oxide breakdown caused by trap generation

- Trap Generation Models
 - AHI
 - Thermochemical
 - No unified model

- Predicting gate-oxide breakdown is difficult

- To protect against gate-oxide breakdown
 - Voltage across gate-oxide should not be larger than VDD
 - Reduce hot-carriers