Python for Data Analysis 1

09/02/14
Blake Jacquot



Motivation

Can Python accommodate routine data analysis task for 3D image
arrays (row, column, time) in manner that compares favorably to
Matlab?

— The answer is ‘Yes’

Python is free and open source with potential to replace costly Matlab



Key Points

The Python array structure in the numerical python toolbox (numpy) allows very
similar command structures to Matlab and comparable processing speeds

Python processing speed compares favorably with Matlab
— Python computes slightly faster than Matlab for median-based operations tested
— Python computes slightly slower than Matlab for most other operations. But they are close.

Python defaults reading with C style indexing. To enforce same 3D structure as
Matlab use the ‘F’ option to force Fortran-style indexing when reshaping arrays
(Matlab is based on Fortran syntax).

— If Fortran order is not enforced, 3D arrays may have structure (z-dim, row, col)

— C style has slowest varying index first, Fortran has it last

— Numpy defaults to column-major order (C order), while Matlab defaults to column-major order (Fortran order)



Matlab Command

Median(matlab_data(:)

mean(matlab_data(:)

std(matlab_data(:)

max(matlab_data(:)

median(matlab_data,3);

mean(matlab_data,3)

std(matlab_data,0,3);

max(matlab_data,[],3);

Tabulated Process Times

Result

37.0

64.32

68.0

255

Time Elapsed
(sec)

0.238

0.004

0.074

0.006

0.184

0.005

0.084

0.005

Python Command

Np.median(data[:])

Np.mean(datal:])

Np.std(datal[:])

Np.max(data[:])

np.median(data, axis = 0)

np.mean(data, axis = 0)

np.std(data, axis = 0)

np.max(data, axis = 0)

Result

37.0

64.32

68.0

255

Time Elapsed
(sec)

0.132

0.013

0.077

0.011

0.131

0.016

0.084

0.015

Winning Platform for
Operation (Time
Difference)

Python (0.106 sec)
Matlab (0.009 sec)

Matlab (0.003 sec)

Matlab (0.005 sec)

Python (0.053sec)

Matlab (0.011 sec)

Tie

Matlab (0.01 sec)

Note

Store all pixels in 1D
array before
processing

Store all pixels in 1D
array before
processing

Store all pixels in 1D
array before
processing

Store all pixels in 1D
array before
processing

Process pixels in 3D
array (same as
images on
‘Processing’ slide)

Process pixels in 3D
array (same as
images on
‘Processing’ slide)

Process pixels in 3D
array (same as
images on
‘Processing’ slide)

Process pixels in 3D
array (same as
images on
‘Processing’ slide)

1D processing is done for vector of 500 x 300 x 51 = 7,650,000 pixels in double precision
3D processing is done for 500 x 300 x 51 array in double precision



u u
import matplotlib.pyplot as plt
plt.imshow(datal[:,:,2], cmap=plt.cm.gray)
plt.show()

imtool(matlab_data(:,:,4))

Matlab = (row, col, z-dim) Python = [row, col, z-dim]
<« _

matlab_data(: , :, 1) datalo0, :, ]

B matlab_data(:,:,2) data[l,:, ]

et matlab_data(:,:,3) data[2 , -

¥ matlab_data(;,:,4) data[3, -, 3] A .

* Images are the same whether viewed in Matlab or Python
« Array used is 3D stack of 51 images with size row= 500, col = 300




Processing

Matlab = (col, row, z-dir) Python = [z-dir, row, col]
median(matlab_data,3)<—— | ————> 0
® Time for operation = 0.184 sec np.median(data, axis = 0)

Time for operation = 0.131 sec

' mean(matlab_data,3);

Time for operation = 0.005 sec np.mean(data, axis = 0)
Time for operation = 0.016 sec -

w std(matlab_data,0,3);

| % Time for operation = 0.084 sec np.std(data, axis = 0)
| Time for operation = 0.084 sec

| ». max(matlab_data,[],3);

&/$ Time for operation = 0.005 sec
np.max(data, axis = 0) :

Time for operation = 0.015 sec “{%

* Processing of 3D images take comparable time whether done in Matlab or Python
* Processing is done on 3D stack of 51 images with size row= 500, col = 300



Matlab vs. Python Command for 1O
and Reshaping

Matlab = (row,col,z-dim)

Python = [row,col,z-dim]

3D array used is (500,300,51) with double precision

Write data to file from Matlab with double precision

%write image to binary file from Matlab with double precision.
fid = fopen('matlab_data.dat’, 'w+");

fwrite(fid,matlab_data, 'double’);

fclose(fid);

Read data to file from Matlab with double precision

Write data to file in Python with double precision

Not explored here

Read data from file in Python with double precision

Not explored here

import numpy as np #numerical computing library
import os #navigates operating system, used for changing folders
import struct #allows interpretation of strings into binary data

currpath = os.getcwd()
os.chdir(currpath)

currfile = ‘matlab_data.dat'

f = open(currfile,'rb") #rb = read binary
data = f.read()

f.close()

#Since data is in string format, we need to convert to double
index =0
pixels =]
while index < len(data):
curr_string = data[findex:index+8]
curr_pix = struct.unpack(‘d',curr_string) #'d' is double
pixels.append(curr_pix)
index+=8 #eight string characters make up a double (8 bytes)

#reshape data
data = np.reshape(pixels,(500,300,51),'F") #'F' refers to interpreting as Fortran
ordering, instead of default C ordering



Notes

Python environment: Enthought Canopy 1.3.0 (64 bit)
192 Gbytes or RAM

64 bit, multi-core processor

Matlab and Python data stored with double precision



