
Python for Data Analysis 1

09/02/14

Blake Jacquot

Motivation

• Can Python accommodate routine data analysis task for 3D image

arrays (row, column, time) in manner that compares favorably to

Matlab?

– The answer is ‘Yes’

• Python is free and open source with potential to replace costly Matlab

Key Points

• The Python array structure in the numerical python toolbox (numpy) allows very

similar command structures to Matlab and comparable processing speeds

• Python processing speed compares favorably with Matlab
– Python computes slightly faster than Matlab for median-based operations tested

– Python computes slightly slower than Matlab for most other operations. But they are close.

• Python defaults reading with C style indexing. To enforce same 3D structure as

Matlab use the ‘F’ option to force Fortran-style indexing when reshaping arrays

(Matlab is based on Fortran syntax).
– If Fortran order is not enforced, 3D arrays may have structure (z-dim, row, col)

– C style has slowest varying index first, Fortran has it last

– Numpy defaults to column-major order (C order), while Matlab defaults to column-major order (Fortran order)

Tabulated Process Times
Matlab Command Result Time Elapsed

(sec)

Python Command Result Time Elapsed

(sec)

Winning Platform for

Operation (Time

Difference)

Note

Median(matlab_data(:) 37.0 0.238 Np.median(data[:]) 37.0 0.132 Python (0.106 sec) Store all pixels in 1D

array before

processing

mean(matlab_data(:)

64.32 0.004 Np.mean(data[:]) 64.32 0.013 Matlab (0.009 sec) Store all pixels in 1D

array before

processing

std(matlab_data(:)

68.0 0.074 Np.std(data[:]) 68.0 0.077 Matlab (0.003 sec) Store all pixels in 1D

array before

processing

max(matlab_data(:) 255 0.006 Np.max(data[:]) 255 0.011 Matlab (0.005 sec) Store all pixels in 1D

array before

processing

median(matlab_data,3);

0.184 np.median(data, axis = 0)

0.131 Python (0.053sec) Process pixels in 3D

array (same as

images on

‘Processing’ slide)

mean(matlab_data,3) 0.005 np.mean(data, axis = 0)

 0.016 Matlab (0.011 sec) Process pixels in 3D

array (same as

images on

‘Processing’ slide)

std(matlab_data,0,3);

0.084 np.std(data, axis = 0)

0.084 Tie Process pixels in 3D

array (same as

images on

‘Processing’ slide)

max(matlab_data,[],3);

0.005 np.max(data, axis = 0)

0.015 Matlab (0.01 sec) Process pixels in 3D

array (same as

images on

‘Processing’ slide)

• 1D processing is done for vector of 500 x 300 x 51 = 7,650,000 pixels in double precision

• 3D processing is done for 500 x 300 x 51 array in double precision

Viewing Images

matlab_data(: , : , 1)

matlab_data(:,:,2)

matlab_data(:,:,3)

matlab_data(:,:,4)

data[0 , : , :]

data[1 , : , :]

data[2 , : , :]

data[3 , : , :]

Matlab = (row, col, z-dim) Python = [row, col, z-dim]

import matplotlib.pyplot as plt

plt.imshow(data[:,:,2], cmap=plt.cm.gray)

plt.show() imtool(matlab_data(:,:,4))

• Images are the same whether viewed in Matlab or Python

• Array used is 3D stack of 51 images with size row= 500, col = 300

Processing
median(matlab_data,3);

Time for operation = 0.184 sec

mean(matlab_data,3);

Time for operation = 0.005 sec

std(matlab_data,0,3);

Time for operation = 0.084 sec

max(matlab_data,[],3);

Time for operation = 0.005 sec

Matlab = (col, row, z-dir) Python = [z-dir, row, col]

np.median(data, axis = 0)

Time for operation = 0.131 sec

np.mean(data, axis = 0)

Time for operation = 0.016 sec

np.max(data, axis = 0)

Time for operation = 0.015 sec

np.std(data, axis = 0)

Time for operation = 0.084 sec

• Processing of 3D images take comparable time whether done in Matlab or Python

• Processing is done on 3D stack of 51 images with size row= 500, col = 300

Matlab vs. Python Command for IO

and Reshaping
Matlab = (row,col,z-dim) Python = [row,col,z-dim]

3D array used is (500,300,51) with double precision

Write data to file from Matlab with double precision
%write image to binary file from Matlab with double precision.

fid = fopen('matlab_data.dat', 'w+');

fwrite(fid,matlab_data, 'double');

fclose(fid);

Read data from file in Python with double precision
import numpy as np #numerical computing library

import os #navigates operating system, used for changing folders

import struct #allows interpretation of strings into binary data

currpath = os.getcwd()

os.chdir(currpath)

currfile = 'matlab_data.dat'

f = open(currfile,'rb') #rb = read binary

data = f.read()

f.close()

#Since data is in string format, we need to convert to double

index = 0

pixels = []

while index < len(data):

 curr_string = data[index:index+8]

 curr_pix = struct.unpack('d',curr_string) #'d' is double

 pixels.append(curr_pix)

 index+=8 #eight string characters make up a double (8 bytes)

#reshape data

data = np.reshape(pixels,(500,300,51),'F') #'F' refers to interpreting as Fortran

ordering, instead of default C ordering

Write data to file in Python with double precision

Not explored here

Read data to file from Matlab with double precision

Not explored here

Notes

• Python environment: Enthought Canopy 1.3.0 (64 bit)

• 192 Gbytes or RAM

• 64 bit, multi-core processor

• Matlab and Python data stored with double precision

